

PTM-50X-RA

Projection

Red Amber I FD

Features

- Red Amber LED with 5.0 mm² emitting area designed for display
- Complement with PTM-50X Converted Green, Blue and Blue Pump for best projection brightness and color gamut
- Dominant wavelength: Red-Amber 614 nm (Typ.)
- LED die precision mounted on low thermal resistance isolated MC-PCB package
- Thermistor pad allows option for precise thermal management
- Drive current up to 11 A
- · Chipset array in series enabling lower drive current
- Windowless package allows for closer collection optics and brighter system solutions
- LED emitting area optimized for micro-display diagonal sizes ranging from 0.45" to 0.65"

Applications

- Specifically engineered for Pico front projectors, head-up projection displays and hybrid projectors
- Suitable for DLP[™], LCoS and HTPS /3LCD microdisplays

Table of Contents

Ordering Information
Binning Structure 3
Absolute Maximum Ratings 4
Device Characteristics
Angular Distribution and Typical Spectrum
Soldering Profile9
Mechanical Dimensions10
Shipping Tray Outline
Shipping Label
Notes
Revision History

Ordering Information

Ordering Part Numbers¹

Color	Lumino	us Flux²	D: 1::0 1 : 0 1	Ordering Part Number ³	
Color	Min. Flux Bin	Min. Flux	Bin kit Ordering Code	Ordering Fart Number	
Red Amber	1P	2100 lm	MPP	PTM-50X-RA-L34-MPP	
	1Q	2250 lm	MPQ	PTM-50X-RA-L34-MPQ	
	1R	2390 lm	MPR	PTM-50X-RA-L34-MPR	

Part Number Nomenclature

PTM 50X RA L34 <Bin kit>

Product Family	Chip Area	Color	Package Configuration	Bin Kit ^{4,5}
PTM: Projection Technology Multi-Die	50: 5.0 mm² X: Isolated	RA: Red Amber	L34: No Connector, Core board, Windowless (See Mechanical Drawing section)	Refer to ordering part numbers in this document

- 1. Ordering part numbers represent bin kits (group of bins that are shippable for a given ordering part number)
- 2. Flux Bin listed is minimum bin shipped, higher bins may be included at Luminus' discretion.
- 3. Ordering Part number is default to L34 package configuration.
- 4. Individual flux bins are not orderable.
- 5. See Bin Kit and Flux / Power bin definitions on page 3.

Binning Structure

Flux Bins^{1,2}

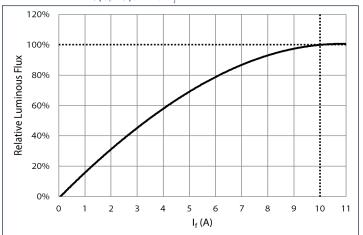
Color	Luminous Flux Bin ³	Binning @ 10 A, T _j = 25°C ^{4,5}		
COIOI	Luilillous Flux Bill	Minimum Flux (lm)	Maximum Flux (lm)	
Red Amber	1P	2100	2250	
	1Q	2250	2390	
	1R	2390	2500	
	18	2500	2660	
	1T	2660	2850	

- 1. Luminus maintains a +/- 6% tolerance on flux and power measurements.
- 2. Products are production tested then sorted and packed by bin.
- 3. Individual bins are not orderable. Please refer to the Product Ordering information page for a list of orderable bin kits.
- 4. Product test condition: 10 A, 20 ms single pulse, 25°C = heat sink temperature = $T_{hs} = T_{j}$
- 5. T_i = Junction temperature.
- $6. \ Wavelength\ bins\ are\ not\ orderable.\ Wavelength\ bins\ are\ displayed\ in\ product\ label.$

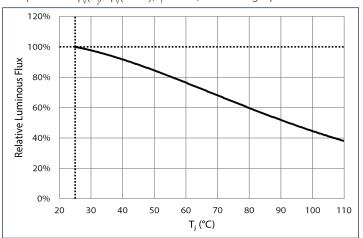
Absolute Maximum Ratings

	Symbol	Values	Unit
Absolute Maximum Reverse Drive Current (CW or Pulsed) ^{1,2}	l r max	0	mA
Absolute Minimum Forward Current (CW or Pulsed) ²	I _{f min}	0.2	
Absolute Maximum Forward Current (CW) ³	I _{f max CW}	8.5	A
Absolute Maximum Forward Current (Pulsed) ^{3,4} (Frequency > 240Hz, duty cycle < 70%)	 f max Pulsed	11.0	A
Absolute Maximum Surge Current ^{3,4} (Frequency >240Hz, duty cycle = 10%, t=1ms)	l surge max	12.0	А
Absolute Minimum Storage Temperature	T _{s min}	-40	°C
Absolute Maximum Storage Temperature	T _{s max}	100	C
Absolute Maximum Junction Temperature	T _{j max}	110	°C
ESD sensitivity ANSI/ESDA/JEDEC JS-001 (HBM, Class 3A)	V _{ESD}	4000	V

- 1. Reverse Current Operation is not allowed.
- 2. Product performance and lifetime data is specified at recommended forward drive currents. Sustained operation at or near absolute minimum currents may result in a reduction of device performance and device lifetime compared to recommended forward currents.
- 3. Sustained operation above maximum currents is not recommended and will result in a reduction of device lifetime compared to specified maximum forward drive currents. Device lifetimes will depend on junction temperature.
- $4. \ ln \ pulsed \ operation, rise \ time \ from \ 10\% \ to \ 90\% \ of \ forward \ current \ should \ be \ larger \ than \ 0.5 \ microseconds.$

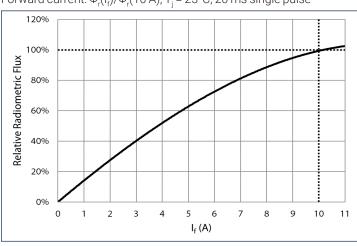

Device Characteristics

General Characteristics	Symbol	Red Amber	Unit
Emitting Area	A _E	4.93	mm²
Emitting Area Dimension		3.30 x 1.54	mm x mm
Optical and Electrical Characteristics ¹			
Test Pulse Duration		20	ms
Test Peak Drive Current ²	I _f	10	А
Peak Luminous Flux ²	φ,	2400	lm
Peak Radiometric Flux ²	$\Phi_{\rm r}$	7.8	W
	$V_{f min}$	5.8	
Forward Voltage	V_{f}	6.7	V
	V _{f max}	7.6	
	$\lambda_{d miin}$	609	
Dominant Wavelength	λ_{d}	614	nm
	$\lambda_{ ext{d max}}$	620	
Peak Wavelength	λ_{p}	621	nm
FWHM- Spectral bandwidth at 50% of $\Phi_{\rm r}$	$\Delta\lambda_{1/2}$	20	nm
Obversation Convenients	CIE x	0.65	
Chromaticity Coordinates ³	CIE y	0.34	
Thermal Characteristics	·		
Thermal Resistance (junction to case) real ⁴	R _{Øj·c real}	0.76	°C/W
Thermal Resistance (junction to case) electrical ⁴	$R_{\theta j\text{-c electrical}}$	0.66	°C/W

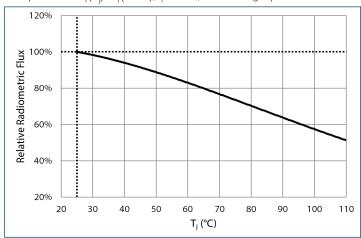

- 1. Characteristics at 10 A, 20 ms $\,$ single pulse, 25°C
- 2. Unless otherwise noted, values listed are typical. All ratings are based on operation with a constant temperature = 25° C = T_{hs} = T_{j}
- 3. In CIE 1931 chromaticity diagram coordinates, normalized to X+Y+Z=1.
- 4. Measurements are in accordance with JEDEC 51-14.

Relative Luminous Flux

Forward current: $\phi_v(I_f)/\phi_v(10 \text{ A})$, $T_i = 25^{\circ}\text{C}$, 20 ms single pulse

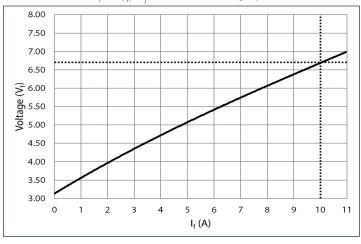


Temperature: $\varphi_v(T_i)/\varphi_v(25^{\circ}C)$, I_f = 10 A, 20 ms single pulse

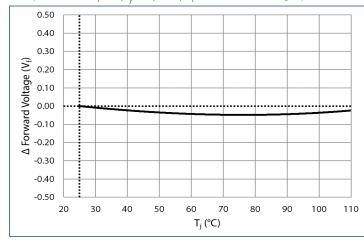


Relative Radiometric Flux

Forward current: $\Phi_r(I_f)/\Phi_r(10 \text{ A})$, $T_i = 25^{\circ}\text{C}$, 20 ms single pulse

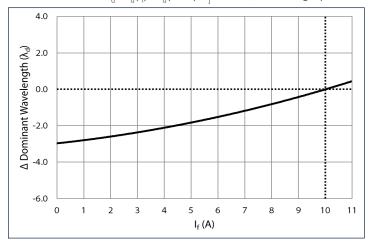


Temperature: $\Phi_r(T_i)/\Phi_r(25^{\circ}C)$, $I_f = 10$ A, 20 ms single pulse

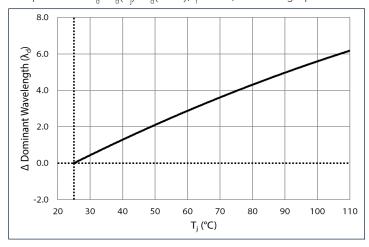


Forward Voltage

Forward current: $V_f = V(I_f)$, $T_i = 25$ °C, 20 ms single pulse

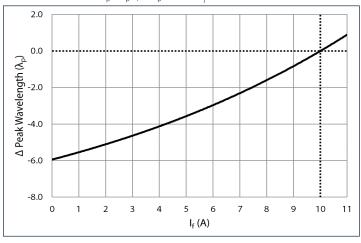


Temperature: $\Delta V_f = V(T_f) - V(25^{\circ}C)$, $I_f = 10$ A, 20 ms single pulse

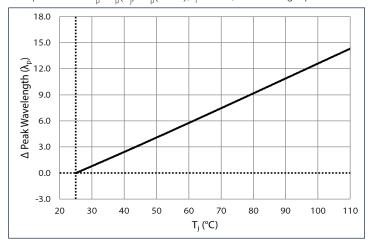


Dominant Wavelength Shift

Forward current: $\Delta \lambda_d = \lambda_d (I_f) - \lambda_d (10 \text{ A})$, $T_i = 25^{\circ}\text{C}$, 20 ms single pulse

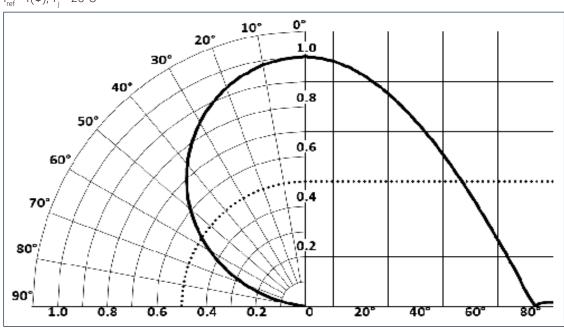


Temperature: $\Delta \lambda_d = \lambda_d(T_i) - \lambda_d(25^{\circ}\text{C})$, I_f = 10 A, 20 ms single pulse

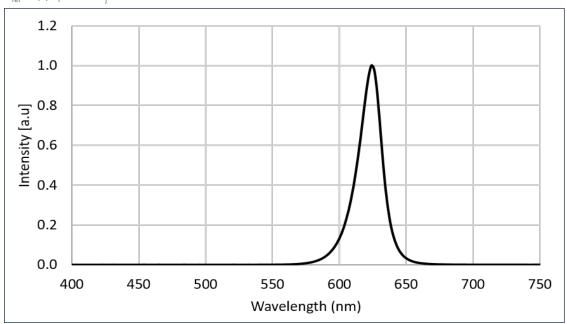


Peak Wavelength Shift

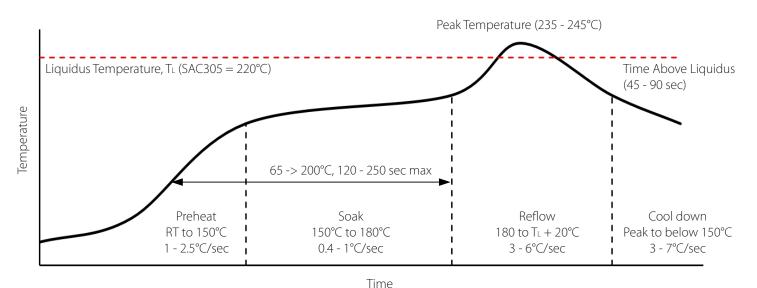
Forward current: $\Delta \lambda_n = \lambda_n (I_f) - \lambda_n (10 \text{ A})$, $T_i = 25^{\circ}\text{C}$, 20 ms single pulse


Temperature: $\Delta \lambda_n = \lambda_n(T_i) - \lambda_n(25^{\circ}C)$, $I_f = 10$ A, 20 ms single pulse

Angular Distribution and Typical Spectrum

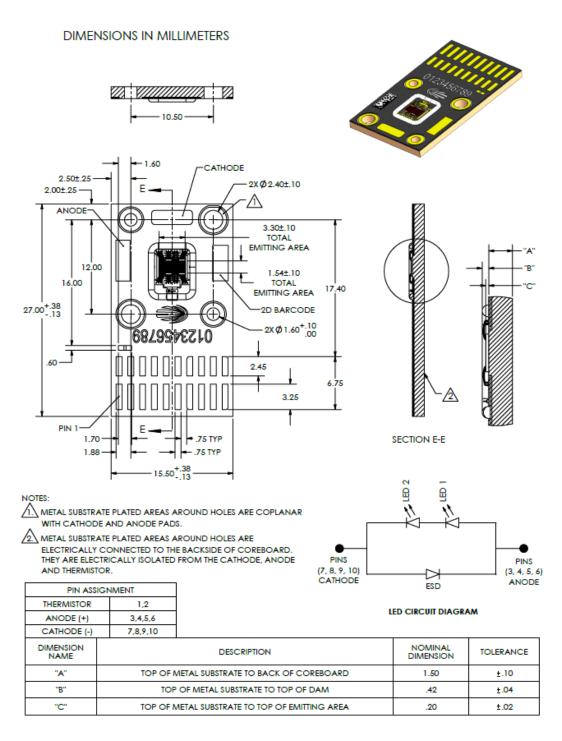

Angular Intensity Distribution¹

 $I_{ref} = f(\Phi); T_j = 25^{\circ}C$

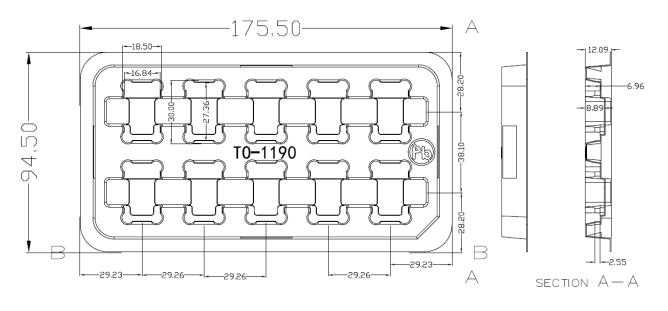

Typical Spectrum²

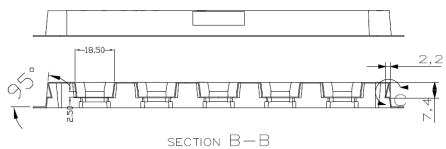
 $\Phi_{ref} = f(\lambda); I_f = 10 \text{ A}; T_j = 25^{\circ}\text{C}$

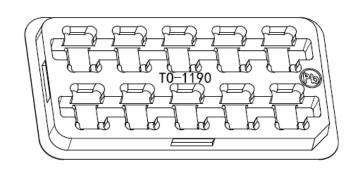
- 1. For any specific device, slight variations may be expected.
- 2. Typical spectrum at recommended peak drive current. Please contact Luminus to obtain data in Excel format.

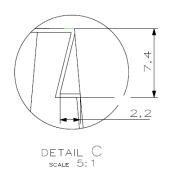

Soldering Profile

SMT Rework Guideline	Manual Hotplate Reflow Hot Air Gun Reflow	
Heating Time	< 60 sec	
Hotplate Temperature	< 245°C	< 150°C

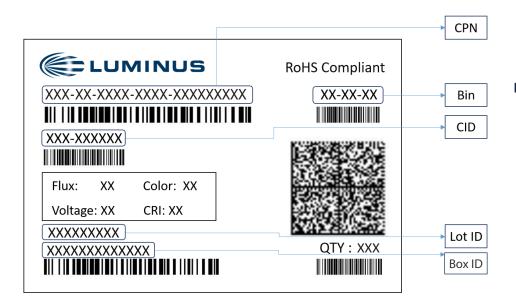

- 1. Product complies to Moisture Sensitivity Level 1 (MSL 1).
- 2. The numbers in the table are specific to SAC305. Luminus recommends using an SAC305 solder paste with a no-clean flux for RoHS compliant products.
- 3. During the pick and place process, ensure the pick-up tool does not touch any die components.
- 4. Use of a multi-zone IR reflow oven with a nitrogen blanket is recommended.
- 5. Time-temperature profile of the reflow process showing the four functional profile zones are defined in IPC-7801. Temperature is referenced to the center of the
- 6. Luminus recommends to use the solder paste data sheet information as a starting point in time-temperature process development.
- 7. These are general guidelines. Consult the solder paste manufacturer's datasheet for guidelines specific to the alloy and flux combination used in your application. For more information, please refer to:
 - https://luminusdevices.zendesk.com/hc/en-us/articles/360060306692-How-do-I-Reflow-Solder-Luminus-SMD-Components-
- 8. For any technical questions about soldering process, please contact Luminus at techsupport@luminus.com.


Mechanical Dimensions




- 1. Die Tilt: 1° Maximum, Die Rotation: ±1°.
- 2. Contact within silicone dam area is prohibited.
- 3. Recommended connector: Manufacturer: Tarng-Yu; Part# TU1502WGR-10S-GO-M8-NL-A.
- $4. \ Recommended female connector: Manufacturer: Tarng-Yu; Part \#TU1502HNO-10; contact terminal part \#TU1502TGO-GO.$
- 5. LED coreboard backside is electrically isolated.
- 6. LED emitter and wirebond not covered, contact within the silicone dam area is prohibited.

Shipping Tray Outline



- 1. Each tray contains 10 units.
- 2. All dimensions are in millimeter ± 0.25 mm.
- 3. For detailed drawing of shipping tray, please refer to document TO-1190, available upon request.

Shipping Label

Label Fields:

- CPN: Luminus ordering part number
- CID: Customer's part number
- QTY: Quantity of devices in pack
- Flux: Bin as defined on page 3
- Voltage: NA
- Color: Bin as defined on page 3
- CRI: NA

Packing Configuration:

- Stack of 5 trays with 10 devices per tray
- Partial pack or tray may be shipped
- Each pack is enclosed in anti-static bag
- Shipping label is placed on top of each pack

Notes

Static Electricity

This product is sensitive to static electricity, and care should be taken when handling them. Static electricity or surge voltage will damage the LEDs. It is recommended to wear an anti-electrostatic wristband or anti-electrostatic gloves when handling the LEDs. All devices, equipment and machinery must be properly grounded. It is recommended that measures be taken to isolate LED processing equipment from potential sources of voltage surges.

Reference: APN-002815 Electrical Stress Damage to LEDs and How to Prevent It

Eye Safety

According to the test specification risk group IEC 62471: 2006-Non-GLS under 10 A, this product complies to Risk group 0 (RG0) Exempt.

No photo biological hazard under foreseeable conditions.

For more information, please refer to: https://luminusdevices.zendesk.com/hc/en-us/articles/10532958752397

Revision History

Rev	Date	Description of Change
01	06/27/2024	Initial release