

SBM-40-HC

Features:

- High optical output at 3A: up to 280 Red lumens up to 640 Green lumens up to 4200 Blue mWatts up to 900 White lumens
- High thermal conductivity package
- Four chips with emitting area of 1 mm² each
- Environmentally friendly: RoHS compliant
- Variable drive currents: 0.1A to 4A
- Available in RGBW combination

Applications:

- Entertainment /Stage Lighting
- Architectural Ligthing
- Spot Lighting
- Pool and Fountain Lighting

- Medical Lighting
- Fiber-coupled Illumination
- Machine Vision

Table of Contents Technology Overview 2

Binning Structure3
Ordering Part Number5
Product Shipping & Labeling Information6
Optical & Electrical Characteris tics7
Thermal Resistance 16
Mechanical Dimensions 17
Solder Profile 18
Packaging Specification 19
Revision History 20

Technology Overview

Luminus LEDs benefit from a suite of innovations in the fields of chip technology, packaging and thermal management. These breakthroughs allow illumination engineers and designers to achieve solutions that are high brightness and high efficiency.

Packaging Technology

Thermal management is critical in high power LED applications. With a thermal resistance from junction to case of 0.9 °C/W (electrical), Luminus SBM-40-HC LEDs have industry-leading thermal resistance. This allows the LED to be driven at higher current while maintaining a low junction temperature, thereby resulting in brighter solutions and longer lifetimes.

Reliability

Designed from the ground up, Luminus LEDs are one of the most reliable light sources in the world today. Luminus LEDs have passed a rigorous suite of environmental and mechanical stress tests, including mechanical shock, vibration, temperature cycling and humidity, and have been fully qualified for use in extreme high power and high current applications. With very low failure rates and median lifetimes that typically exceed 60,000 hours, Luminus LEDs are ready for even the most demanding applications.

Environmental Benefits

Luminus LEDs help reduce power consumption and the amount of hazardous waste entering the environment. All LED products manufactured by Luminus are RoHS compliant and free of hazardous materials, including lead and mercury.

Static Electricity

The products are sensitive to static electricity, and care should be taken when handling them. Static electricity or surge voltage willdamage the LEDs. It is recommended to wear an antielectrostatic wristband or an anti-electrostatic gloves when handling the LEDs. All devices, equipment and machinery must be properly grounded. It is recommended that measures be taken against surge voltage to the equipment that mounts the LEDs.

Reference: APN-002815 Electrical Stress Damage to LEDs and How to Prevent It

Understanding Luminus LED Test Specifications

Every Luminus LED is fully tested to ensure that it meets the high quality standards expected from Luminus' products.

Testing Temperature

Luminus surface mount LEDs are typically tested with a 20 ms input pulse and a junction temperature of 25 °C. Expected flux values in real world operation can be extrapolated based on the information contained within this product data sheet.

This method of measurement ensures that Luminus LEDs perform in the field just as they are specified.

Multiple Operating Points

The tables on the following pages provide typical optical and electrical characteristics. Since the LEDs can be operated over a wide range of drive conditions (currents from 0.1 A to 4A (3A for red), and duty cycle from <1% to 100%), multiple drive conditions are listed.

SBM-40-HC Red, Green, Blue and White Binning Structure^{1,2}

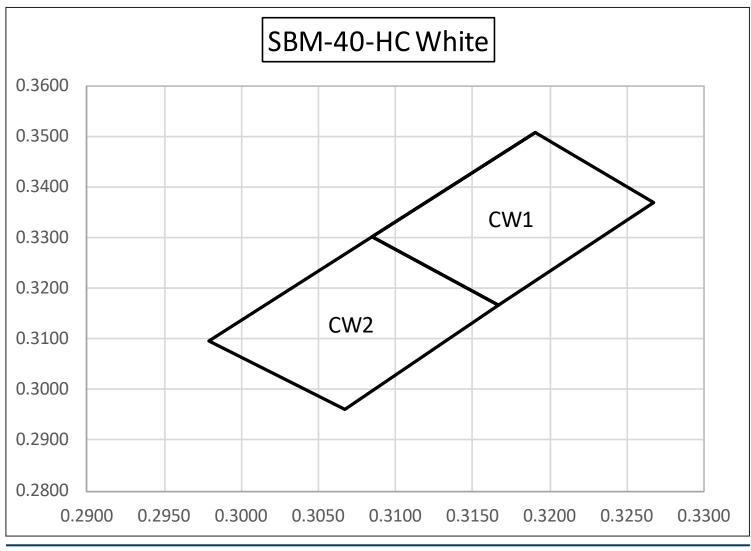
All SBM-40-HC LEDs are tested at 1 A for luminous flux, radiometric flux and dominant wavelength and placed into one of the following wavelength and flux bins. The binning structure is universally applied across each color of the SBM-40-HC product line.

Color	Min Max Luminous Flux (lm) @ 1 A	MinMax Radiometric Flux (mW) @ 1 A	Min Max Luminous Flux (lm) @ 3 A	MinMax Radiometric Flux (mW) @ 3 A
Red	110 165		187 280	
Green	220 360		400 640	
Blue		1100 1800		2600 4200
White	240 400		540 900	

Red, Green and Blue Dominant Wavelength Bins

Color	Wavelength Bin (FF)	Minumum Wavelength (nm) @ 1 A	Maximum Wavelength (nm) @ 1 A
Red	R1	621	627
Groop	G1	519	525
Green	G2	525	531
Plue	B1	449	454
Blue	В2	454	459

Note 1: Luminus maintains a +/- 6% tolerance on flux measurements.


3

Note 2: Only specific bins are available for large order, contact Luminus sales team for more information.

SBM-40-HC White Chromaticity Coordinates

Chromaticity Coordinates					
Bin Code (CW)	CIEx	CIEy			
	0.3190	0.3507			
CW1	0.3267	0.3370			
CWI	0.3167	0.3166			
	0.3085	0.3302			
CW2	0.3085	0.3302			
	0.3167	0.3166			
	0.3067	0.2961			
	0.2979	0.3096			

SBM-40-HC Bin Kit Ordering Nomenclature and Ordering Part Number

All SBM-40-SC RGBW products are sold in sets of flux and chromaticity bins called bin kits. Each bin kit specifies a minimum flux bin and a specific selection of chromaticity bins. The ordering part number designation is as follows:

Bin Kit	RGB Flux	White Chromaticity	White Flux	Ordering Part Number
QE100	Full Distribution	CW1,CW2	Full Distribution	SBM-40-RGBW-HC41-QE100

For other bin kits, please contact a Luminus representative.

Example:

The ordering part number SBM-40-RGBW-HC41-QE100 refers to bin kit which consists of a RGBW, SBM-40-HC emitter, with Red Flux > 110 lm and Red DWL range of 621nm-627 nm; Green flux > 220 lm and Green DWL range of 519 nm to 531 nm; Blue power > 1100 mW and Blue DWL range of 449 nm to 459 nm; White flux >240 lm.

Part Number Nomenclature

SBM –	- 40 -	– RGBW –	- HC4 1	
Product Family	LED Emission Area	Color	Package Configuration	Bin kit
SBM: Multi-Chip Surface mount device, Non- Encapsulated	40: 4 dies - each 1.0 mm²	<y>: Color R = Red G = Green B = Blue W = White</y>	HC41: 10.0 mm x 11.0 mm - Surface mount, shipped in tape & reel	Flux and Chromaticity bin kit code - See available ordering codes below

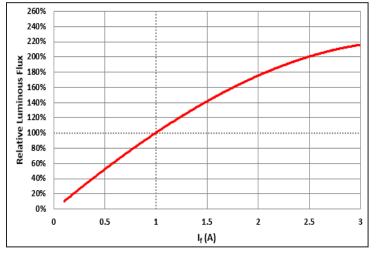
Product Shipping & Labeling Information

All SBM-40-HC products are packaged and labeled with their respective bin as outlined in the tables on pages 3 & 4. When shipped, each reel will only contain one bin. The part number designation is as follows:

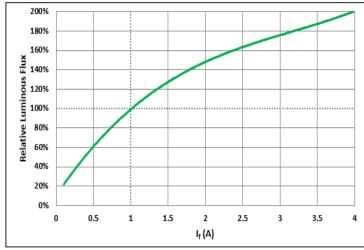
SBM –	- 40 -	– RGBW –	— HC41 —	– QE <xxx></xxx>
Product Family	Chip Area	Color	Package Configuration	Bin Kit Identifier
Surface Mount (window)	4.0 mm ²	R : Red G : Green B : Blue W : White	Internal Code	QEXXX

Optical & Electrical Characteristics^{1,2}

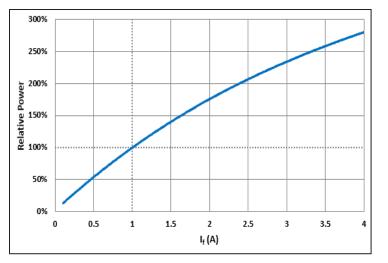
Parameter	Symbol	Red	Green	Blue	White	Unit
Drive Condition ³	I	1.0	1.0	1.0	1.0	А
Emitting Area	-	1.0	1.0	1.0	1.0	mm²
Emitting Area Dimensions	-	1.0 x 1.0	1.0 x 1.0	1.0 x 1.0	1.0 x 1.0	mm x mm
	$\lambda_{d \min}$	621	519	449	-	nm
Dominant Wavelength	$\lambda_{d typ}$	624	525	454	-	nm
	$\lambda_{d \max}$	627	531	459	-	nm
FWHM (typ.)	Δλ _{1/2}	15.1	31.8	18.1	N/A	nm
Chromaticity Coordinates ⁴ (typ.)	x				0.31	-
Chromaticity Coordinates ⁴ (typ.)	у				0.32	-
	V _{F min}	2.3	3.0	2.7	2.7	V
Forward Voltage	V _{F typ}	2.5	3.2	3.05	3.05	V
	V _{F max}	2.8	3.9	3.4	3.4	V
Minimum Current ⁵	-	0.1	0.1	0.1	0.1	A
Maximum Current ⁵	-	3.0	4.0	4.0	4.0	A
LED Junction Temperature ⁵	$T_{joperating,max}$	115	150	150	150	°C
Storage Temperature Range	-	-40/+100	-40/+100	-40/+100	-40/+100	∘⊂

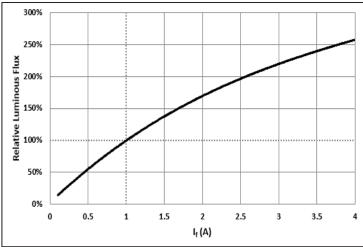

Note 1: All ratings are based on test conditions of $I_f = 1000 \text{ mA}$, $T_c = 25 \text{ °C}$, 20 millisecond pulse. T_{case} is defined on Thermal Resistance section, page 16.

- Note 2: Unless otherwise noted, values listed are typical. Devices are production tested and specified at 1A/mm² for red, green, blue and white. Values provided at 3 A based on characterization and measurements at 2A/mm².
- Note 3: SBM-40-HC RGBW devices can be driven at currents ranging from 0.1 A to 3 A depending on color and at duty cycles ranging from 1% to 100%. Drive current and duty cycle should be adjusted as necessary to maintain the junction temperature desired to meet application lifetime requirements.
- Note 4: In CIE 1931 chromaticity diagram coordinates, normalized to x+y+z=1.
- Note 5: SBM-40-HC RGBW devices are designed for continuous operation to a maximum current as specified above. Product lifetime data is specified at recommended forward drive currents. Sustained operation at or beyond maximum currents will result in a reduction of device lifetime compared to recommended forward drive currents. Actual device lifetimes will also depend on junction temperature. Refer to the lifetime derating curves for further information.

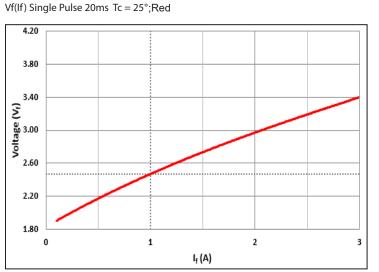


Optical & Electrical Characteristics⁶

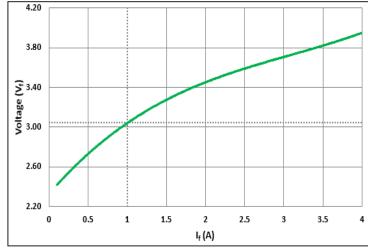

Relative Luminous Flux vs. If $\varphi v/\varphi v(1A)$ Single Pulse 20ms Tc = 25°;Red


Relative Luminous Flux vs. If $\phi v/\phi v(1A)$ Single Pulse 20ms Tc = 25°;Green

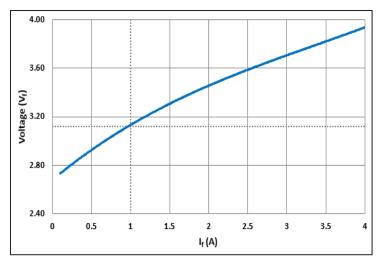
Relative Luminous Flux vs. If $\varphi v/\varphi v(1A)$ Single Pulse 20ms Tc = 25°; Blue



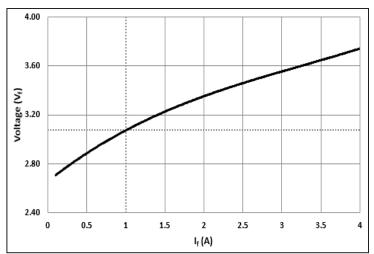
Relative Luminous Flux vs. If $\varphi v/\varphi v(1A)$ Single Pulse 20ms Tc = 25°; White



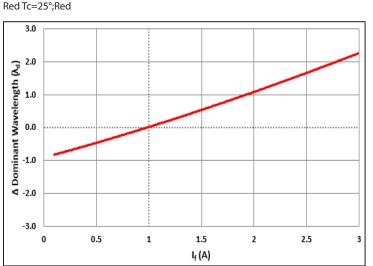
Note 6: Flux and power values are measured using a current pulse of typical 20 ms. Luminus maintains a test measurement accuracy for LED flux and power of ±6%.

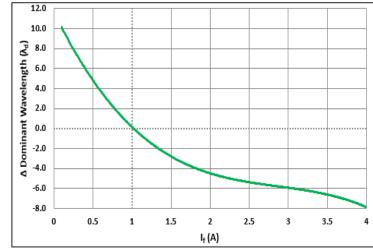


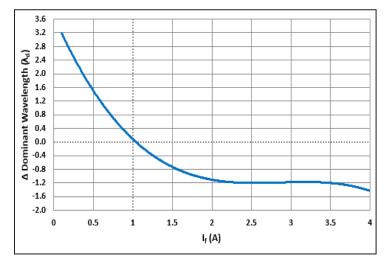
Vf vs. If Vf(If) Single Pulse 20ms Tc = 25°;Green



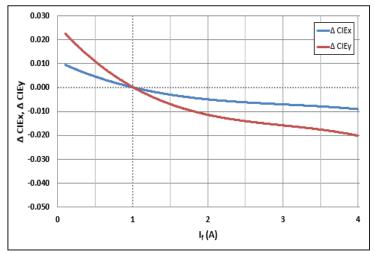
Vf vs. lf Vf(lf) Single Pulse 20ms Tc = 25°;Blue


Vf vs. If


Vf vs. lf Vf(lf) Single Pulse 20ms Tc = 25°;White

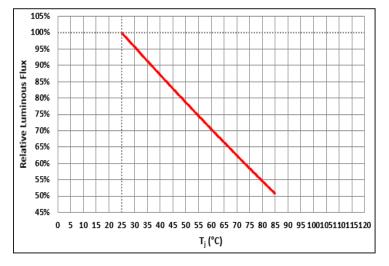


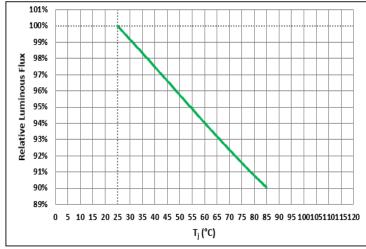
 Δ Dominant Wavelength (λd) Green Tc=25°;Green



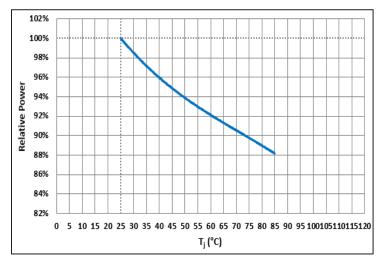
 Δ Dominant Wavelength (\lambdad) Blue Tc=25°,Blue

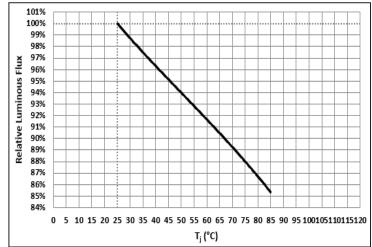
 Δ Dominant Wavelength (λ d)


Chromaticity Shift vs. If $\Delta CIEx,y = CIEx,y(If) - CIEx,y$ (1A), Single Pulse 20ms Tc = 25°C,White

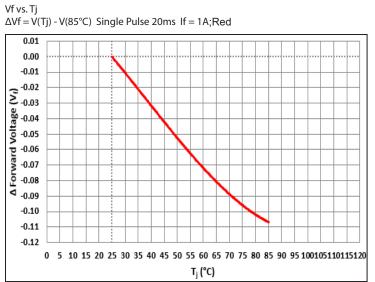


Optical & Electrical Characteristics⁶

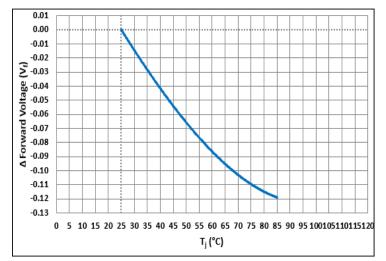

Relative Luminous Flux vs. Tj $\varphi v/\varphi v(85^{\circ}C)$ Single Pulse 20ms If = 1A;Red


Relative Luminous Flux vs. Tj $\phi v / \phi v (85^{\circ}C)$ Single Pulse 20ms If = 1A;Green

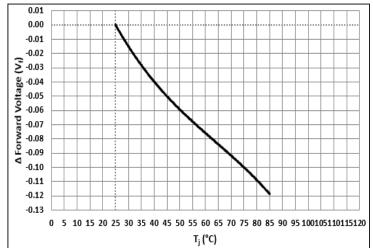
Relative Power vs. Tj $\phi v / \phi v (85^{\circ}C)$ Single Pulse 20ms If = 1A;Blue

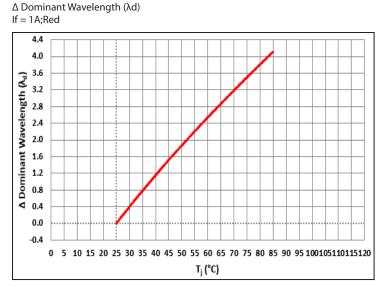


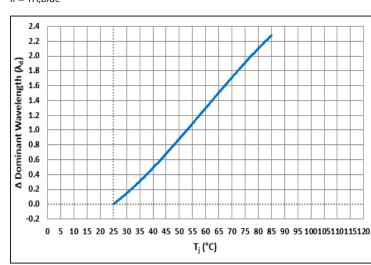
Relative Luminous Flux vs. Tj $\varphi v / \varphi v (85^{\circ}C)$ Single Pulse 20ms If = 1A;White

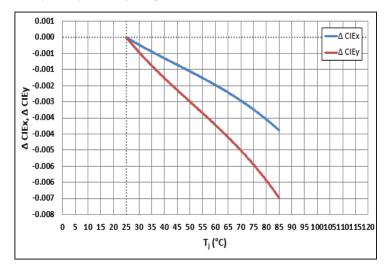


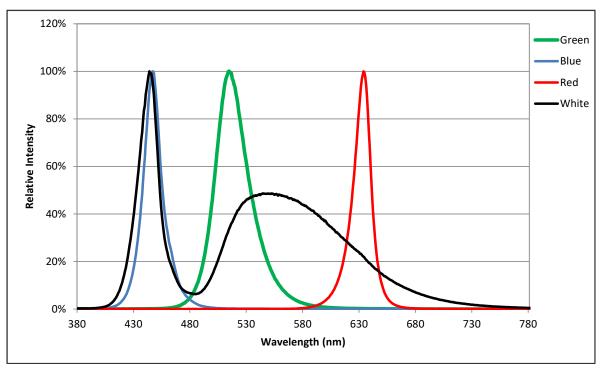
Note 6: Flux and power values are measured using a current pulse of typical 20 ms. Luminus maintains a test measurement accuracy for LED flux and power of ±6%.



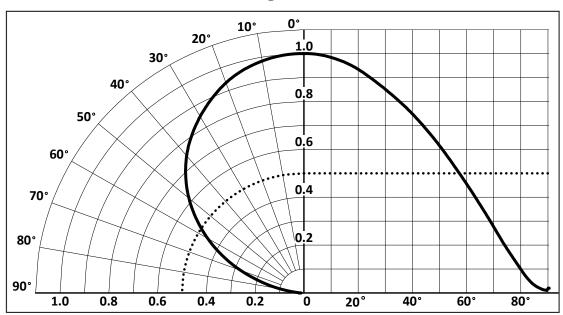

Vf vs. Tj Δ Vf = V(Tj) - V(85°C) Single Pulse 20ms If = 1A;Green 0.00 0.02 0.00 0.00 0.02 0.00 0.0


Vf vs. Tj Δ Vf = V(Tj) - V(85°C) Single Pulse 20ms If = 1A;White

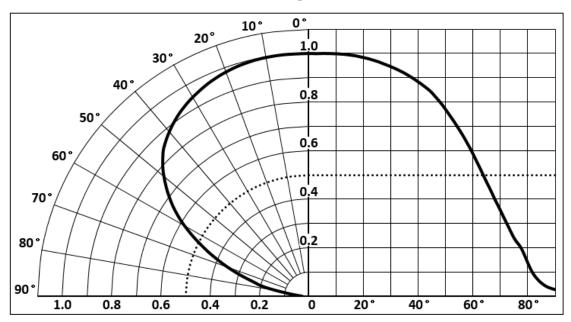


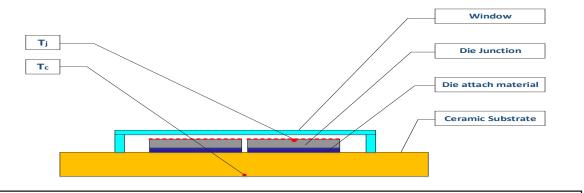

Δ Dominant Wavelength (λ d) If = 1A,Blue

Chromaticity Shift vs. Tj Δ CIEx,y = CIEx,y(If) - CIEx,y , Single Pulse 20ms If = 1A,White



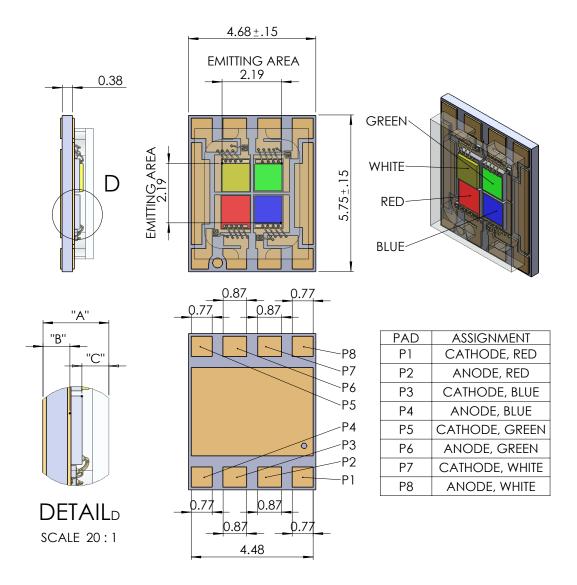
SBM-40-HC -RGBW Spectrum⁷


Note 7: Typical spectrum from Red, Green, Blue and White LEDs at reference current of 1 A, CW. Please contact Luminus to obtain data in Excel format.


SBM-40-HC -RGB Angular Distribution

SBM-40-HC -W Angular Distribution

SBM-40-HC Thermal Resistance

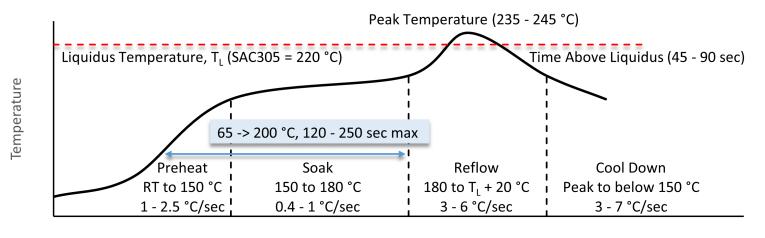


Thermal resistance junction to case, R $_{th(j-c)_real} = 1.2 \text{ °C/W (typ.),(All chips operated simultaneously)}$ Thermal resistance junction to case, R $_{th(j-c)_electrical} = 0.9 \text{ °C/W (typ.)}$ (All chips operated simultaneously)

Case Temperature (T_c) = Temperature at bottom of ceramic substrate.

Mechanical Dimensions – SBM-40-HC Emitter

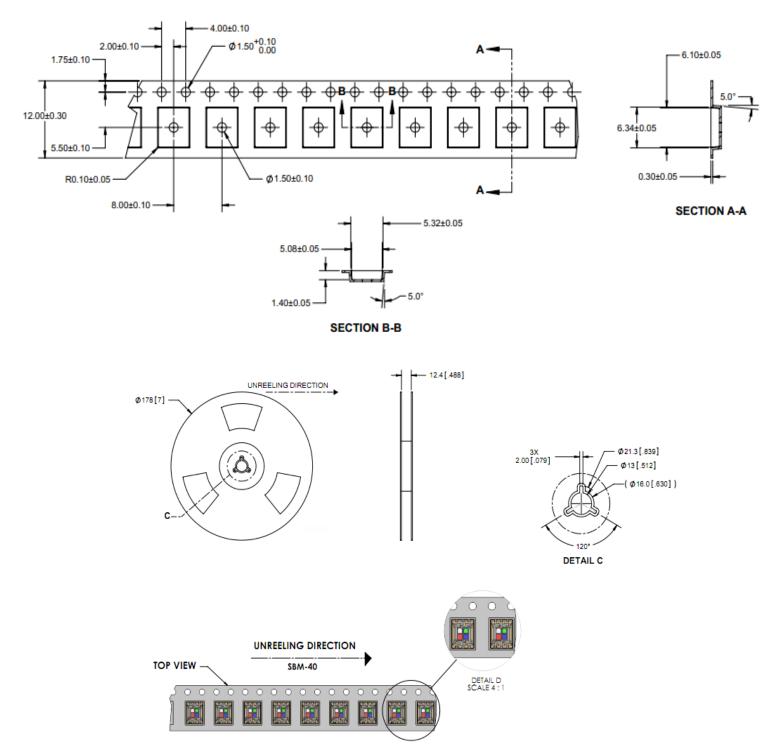
DIMENSION NAME	DESCRIPTION	NOMINAL DIMENSION	TOLERANCE
"A"	BOTTOM OF SUBSTRATE TO TOP OF WINDOW	1.21	±.10
"B"	BOTTOM OF SUBSTRATE TO TOP OF COPPER TRACE	0.51	±.05
"C"	TOP OF DIE EMITTING AREA TO TOP OF WINDOW	0.48	±.07


For prototyping purposes, please see Bergquist thermal clad boards, part #803807 (square board) or part # 803808 (star board). Available from Digi-Key or Mouser.

Solder Profile

Moisture Sensitivity Level					
MSL		3			
Profile Feature	Process Window	Time	Average ramp-up rate		
Preheat		120, 250,000	1 - 2.5°C/sec		
Soak	65°C - 200°C 120 - 250 se		0.4 - 1°C/sec		
Reflow Spike	180°C - T _L + 20°C N/A		3 - 6°C/sec		
Cool Down	T _p to below 150°C N/A 3 - 7°		3 - 7°C/sec		
Liquidus Temperature (T _L)	22	20°C			
Time Above Liquidus	45 - 90sec				
Peak Temperature	235 -	245°C			
SMT Rework Guideline	Manual Hotplate Reflow	Hot Air	Gun Reflow		

SMT Rework Guideline	Manual Hotplate Reflow Hot Air Gun Reflow			
Heating Time	< 60 sec			
Hotplate Temperature	< 230°C	< 150°C		


Time

- Note 1: The numbers in the table are specific to SAC305. Luminus recommends using an SAC305 solder paste with a no-clean flux for RoHS compliant products.
- Note 2: During the pick and place process, axial forces on the dome (or window) should not exceed 0.5 Newtons (N).
- Note 3: Use of a multi-zone IR reflow oven with a nitrogen blanket is recommended.
- Note 4: Time-temperature profile of the reflow process showing the four functional profile zones are defined in IPC-7801. Temperature is referenced to the center of the PCB.
- Note 5: Luminus recommends to use the solder paste data sheet information as a starting point in time-temperature process development.
- Note 6: These are general guidelines. Consult the solder paste manufacturer's datasheet for guidelines specific to the alloy and flux combination used in your application. Product complies to MSL Level 3. For more information, please refer to: <u>https://luminusdevices.zendesk.com/hc/en-us/</u> <u>articles/360060306692-How-do-I-Reflow-Solder-Luminus-SMD-Components-</u>
- Note 7: For any technical questions about soldering process, please contact Luminus at techsupport@luminus.com.

Packaging Specification

Packing Unit = 500 pcs per reel

Note 1: For detailed drawing, please refer to drawing number: TO-1156.

PDS-003034 Rev.2 © 2022 Luminus Devices, Inc. - All Rights Reserved

Revision History

Revision	Date	Description
1	11/08/2020	Datasheet release
2	02/21/2022	Add ESD information, update White Chromaticity Coordinates and Solder Profile.

The products, their specifications and other information appearing in this document are subject to change by Luminus Devices without notice. Luminus Devices assumes no liability for errors that may appear in this document, and no liability otherwise arising from the application or use of the product or information contained herein. None of the information provided herein should be considered to be a representation of the fitness or suitability of the product for any particular application or as any other form of warranty. Luminus Devices' product warranties are limited to only such warranties as accompany a purchase contract or purchase order for such products. Nothing herein is to be construed as constituting an additional warranty. No information contained in this publication may be considered as a waiver by Luminus Devices of any intellectual property rights that Luminus Devices may have in such information.

This product is protected by U.S. Patents 6,831,302; 7,074,631; 7,083,993; 7,084,434; 7,098,589; 7,105,861; 7,138,666; 7,166,870; 7,166,871; 7,170,100; 7,196,354; 7,211,831; 7,262,550; 7,274,043; 7,301,271; 7,341,880; 7,344,903; 7,345,416; 7,348,603; 7,388,233; 7,391,059 Patents Pending in the U.S. and other countries.