

SBM-40-SC

Table of Contents

Technology Overview 2
Ordering Information3
Binning Structure4
Typical Device Performance6
Absolute Maximum Ratings7
Optical & Electrical Characteristics
Typical Spectrum 14
Angular Intensity Distribution (Typical) 14
Solder Profile 15
Thermal Resistance 16
Mechanical Dimensions 17
Shipping Reel Outline 18
Shipping Label
Revision History 20

Features:

- High optical output at 2 A: up to 253 Red lumens up to 404 Green lumens up to 2265 Blue mWatts up to 543 White lumens
- High thermal conductivity package
- Four chips with emitting area of 1 mm² each
- Environmentally friendly: RoHS compliant
- Variable drive currents: 0.1 A to 2.0 A
- Available in RGBW combination

Applications:

- Entertainment /Stage Lighting
- Architectural Ligthing
- Spot Lighting
- Pool and Fountain Lighting

- Medical Lighting
- Fiber-coupled Illumination
- Machine Vision

Technology Overview

Luminus LEDs benefit from a suite of innovations in the fields of chip technology, packaging and thermal management. These breakthroughs allow illumination engineers and designers to achieve solutions that are high brightness and high efficiency.

Packaging Technology

Thermal management is critical in high power LED applications. With a thermal resistance from junction to case of 0.8° C/W (electrical), Luminus SBM-40-SC LEDs have industry-leading thermal resistance. This allows the LED to be driven at higher current while maintaining a low junction temperature, thereby resulting in brighter solutions and longer lifetimes.

Reliability

Designed from the ground up, Luminus LEDs are one of the most reliable light sources in the world today. Luminus LEDs have passed a rigorous suite of environmental and mechanical stress tests, including mechanical shock, vibration, temperature cycling and humidity, and have been fully qualified for use in extreme high power and high current applications. With very low failure rates and median lifetimes that typically exceed 60,000 hours, Luminus LEDs are ready for even the most demanding applications.

Environmental Benefits

Luminus LEDs help reduce power consumption and the amount of hazardous waste entering the environment. All LED products manufactured by Luminus are RoHS compliant and free of hazardous materials, including lead and mercury.

Static Electricity

The products are sensitive to static electricity, and care should be taken when handling them. Static electricity or surge voltage will damage the LEDs. It is recommended to wear an anti-electrostatic wristband or an anti-electrostatic gloves when handling the LEDs. All devices, equipment and machinery must be properly grounded. It is recommended that measures be taken against surge voltage to the equipment that mounts the LEDs.

Reference: APN-002815 Electrical Stress Damage to LEDs and How to Prevent It

Understanding Luminus LED Test Specifications

Every Luminus LED is fully tested to ensure that it meets the high quality standards expected from Luminus' products.

Testing Temperature

Luminus surface mount LEDs are typically tested with a 20 ms input pulse and a case temperature of 25 °C. Expected flux values in real world operation can be extrapolated based on the information contained within this product data sheet.

This method of measurement ensures that Luminus LEDs perform in the field just as they are specified.

Multiple Operating Points

The tables on the following pages provide typical optical and electrical characteristics. Since the LEDs can be operated over a wide range of drive conditions (currents from 0.1 A to 2.0 A, and duty cycle from <1% to 100%), multiple drive conditions are listed.

<Rin kit>

Ordering Information

All SBM-40-SC RGBW products are sold in sets of flux and chromaticity bins called bin kits. Each bin kit specifies a minimum flux bin and a specific selection of chromaticity bins. The ordering part number designation is as follows:

Ordering Part Number

Color	Min. Flux/ Power	Wavel	length	White	Oudering Deut Neuslau	
Color	Min. Flux/ Power	Bin	Range (nm)	Chromaticity Bin	Ordering Part Number	
Red	90 lm	RW	621-626			
Green	210 lm	GW	522-527		, , , , , , , , , , , , , , , , , , ,	
Blue	1000 mW	BW	451-456		SBM-40-RGBW-SC41-QD100	
White	210 lm			1A		

For other bin kits, please contact a Luminus representative.

Example:

The ordering part number SBM-40-RGBW-SC41-QD100 refers to bin kit which consists of a RGBW, SBM-40-SC emitter, with Red Flux > 90 lm and Red DWL range of 621nm-626 nm; Green flux > 210 lm and Green DWL range of 522 nm to 527 nm; Blue power > 1000 mW and Blue DWL range of 451 nm to 456 nm; White flux >210 lm.

Part Number Nomenclature

SBM

33			33	
Product Family	LED Emission Area	Color	Package Configuration	Bin kit ¹
SBM: Multi-Chip Surface mount device, Protective window	1 40° 4 606 - 6366 10	<y>: Color R = Red G = Green B = Blue W = White</y>	SC41: Surface mount, shipped in tape & reel	Bin code - See available order- ing part number

SC41

RGBW

Note 1: Flux Bin listed is minimum bin shipped, higher bins may be included at Luminus' discretion.

40

Binning Structure^{1,2,3}

All SBM-40-SC LEDs are tested at 1 A at T_c =25°C for luminous flux, radiometric flux and dominant wavelength and placed into one of the following wavelength and flux bins. The binning structure is universally applied across each color of the SBM-40-SC product line.

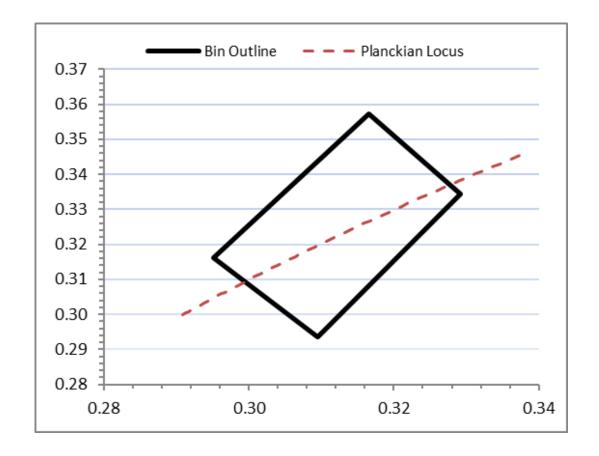
Flux Bins

	Binning @ 1	A, T _c = 25°C	Binning @ 2A, T _c = 25°C		
Color	Minmum Flux/ Power Maximum Flux/ Power		Minmum Flux/ Power (Correlated Values)	Maximum Flux/ Power (Correlated Values)	
Red	90 lm	140 lm	163 lm	253 lm	
Green	210 lm	285 lm	298 lm	404 lm	
Blue	1000 mW	1400 mW	1618 mW	2265 mW	
White	210 lm	345 lm	330 lm	543 lm	

Dominant Wavelength Bins³

Color	Wayalanath Bin /EE\	Binning @ 1A, T _c = 25°C		
Color	Wavelength Bin (FF)	Minumum Wavelength	Maximum Wavelength	
Red	RW	621	626	
Green	GW	522	527	
Blue	BW	451	456	

Note 1: Luminus maintains a +/- 6% tolerance on flux measurements.


Note 2: Contact Luminus sales team for specific bin requirements.

Note 3: Devices are binned at standard 1A, 20ms pulse, $T_c = 25^{\circ}$ C condition.

White Chromaticity Coordinates

Chromaticity Coordinates						
Bin Code (WW)	CIEx	CIEy				
1A	0.3166	0.3574				
	0.3292	0.3345				
	0.3094	0.2937				
	0.2951	0.3162				

Typical Device Performance 1,2

Parameter		Symbol	Red	Green	Blue	White	Unit
Drive Condition ³		Ţ	1.0	1.0	1.0	1.0	А
Emitting Area			1.0	1.0	1.0	1.0	mm²
	min	$\lambda_{d min}$	621	522	451		nm
Dominant Wavelength	typ	λ_{dtyp}	623	525	454		nm
	max	$\lambda_{d\text{max}}$	626	527	456		nm
FWHM	typ	$\Delta\lambda_{_{1/2}}$	17	32	21		nm
Chromaticity Coordinates	typ	Х				0.31	
Chromaticity Coordinates⁴	typ	у				0.32	
	min	$V_{_{Fmin}}$	2.3	3.0	3.0	3.0	V
Forward Voltage	typ	$V_{_{\sf Ftyp}}$	2.7	3.7	3.5	3.6	V
	max	$V_{_{Fmax}}$	3.6	3.9	3.9	3.9	V
Device Thermal Characteristics							
Thermal resistance junction to case (Real)		$R_{\text{th(j-c)}}$	1.0				°C/W
Thermal resistance junction to case (Electrical)		$R_{\text{th(j-c)}}$		0	.8		°C/W

Absolute Maximum Ratings 1,2

Parameter		Symbol	Red	Green	Blue	White	Unit
Minimum Current 5			0.1	0.1	0.1	0.1	А
Maximum Current ⁵			2.0	2.0	2.0	2.0	А
Maximum Operating Junction Temperature 5,6	max	T j operating,max	100	140	130	130	°C
Absolute Maximum Junction Temperature 5,6	max	T j absolute max	115	150	150	150	°C
Storage Temperature Range			-40/+100	-40/+100	-40/+100	-40/+100	°C

Note 1: All ratings are based on test conditions of I,= 1000 mA, T,=25 °C, 20 millisecond pulse. T, is temperature at bottom of ceramic substrate.

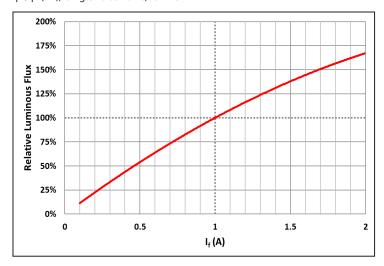
Note 2: Unless otherwise noted, values listed are typical. Devices are production tested and specified at 1 A for red, green, blue and white. Values provided at 2 A based on characterization and measurements at 2 A.

Note 3: SBM-40-SC RGBW devices can be driven at currents ranging from 0.1 A to 2 A depending on color and at duty cycles ranging from 1% to 100%.

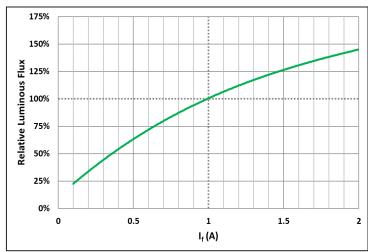
Drive current and duty cycle should be adjusted as necessary to maintain the junction temperature desired to meet application lifetime requirements.

Note 4: In CIE 1931 chromaticity diagram coordinates, normalized to x+y+z=1.

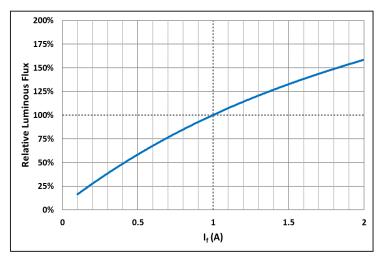
Note 5: SBM-40-SC RGBW devices are designed for continuous operation to a maximum current as specified above. Product lifetime data is specified at recommended forward drive currents. Sustained operation at or beyond maximum currents will result in a reduction of device lifetime compared to recommended forward drive currents. Actual device lifetimes will also depend on junction temperature. Refer to the lifetime derating curves for further information.


Note 6: Maximum Operating Junction Temperature and Absolute Maximum Junction Temperature assume that with all four (RGBW) LEDs operating simultaneously at 2A.

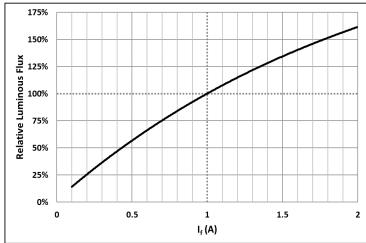
Optical & Electrical Characteristics¹


Relative Luminous Flux - Red

Relative Luminous Flux vs. If $\varphi v/\varphi v(1A)$, Single Pulse 20ms, Tc = 25°


Relative Luminous Flux - Green

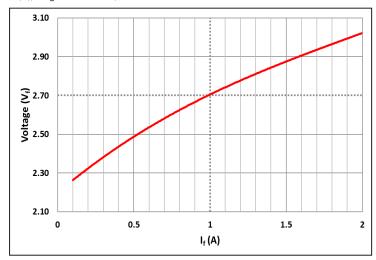
Relative Luminous Flux vs. If $\varphi v/\varphi v(1A)$, Single Pulse 20ms, Tc = 25°


Relative Luminous Flux - Blue

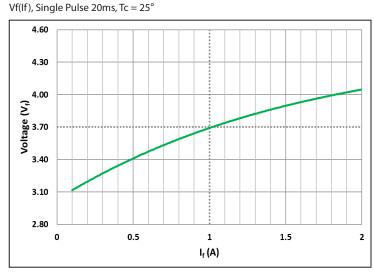
Relative Luminous Flux vs. If $\varphi v/\varphi v(1A)$, Single Pulse 20ms, Tc = 25°

Relative Luminous Flux - White

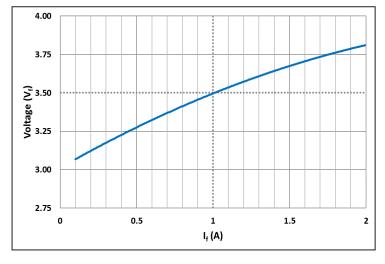
Relative Luminous Flux vs. If $\phi v/\phi v(1A)$, Single Pulse 20ms, $Tc=25^{\circ}$


Note 1: Flux and power values are measured using a current pulse of typical 20 ms. Luminus maintains a test measurement accuracy for LED flux and power of $\pm 6\%$.

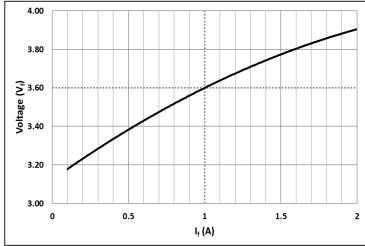
Optical & Electrical Characteristics


Voltage as function of Forward Current - Red

Vf vs. If Vf(If), Single Pulse 20ms, $Tc = 25^{\circ}$


Voltage as function of Forward Current - Green

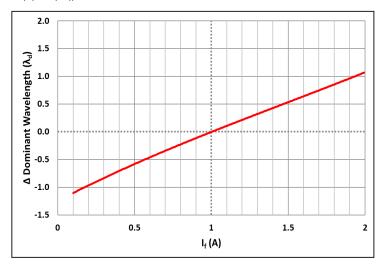
Vf vs. If


Voltage as function of Forward Current - Blue

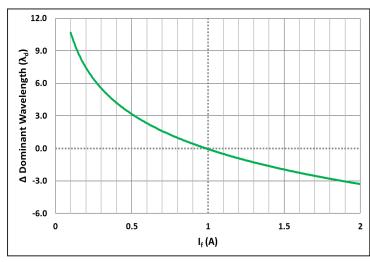
Vf vs. If Vf(If), Single Pulse 20ms, Tc = 25°

Voltage as function of Forward Current - White

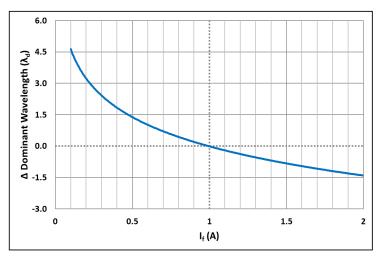
Vf vs. If Vf(If), Single Pulse 20ms, Tc = 25°



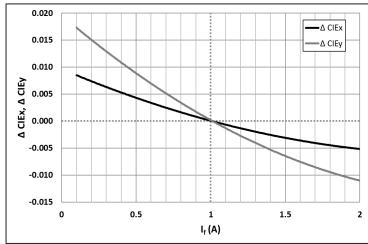
Optical & Electrical Characteristics


Wavelength change as function of Current - Red

 Δ Dominant Wavelength ($\lambda d)$ vs. If $\lambda d(If)$ - $\lambda d(1A)$, $Tc=25^{\circ}$


Wavelength change as function of Current - Green

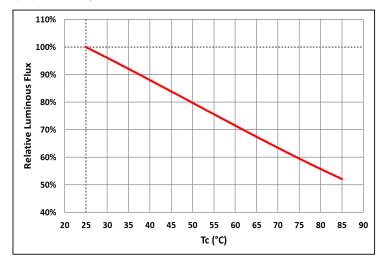
 Δ Dominant Wavelength (λ d) vs. If λ d(If) - λ d(1A), Tc = 25°


Wavelength change as function of Current - Blue

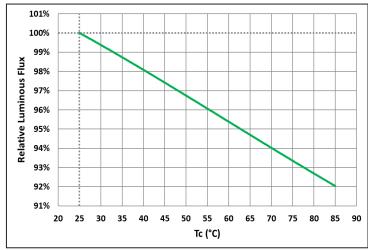
 Δ Dominant Wavelength (λ d) vs. If λ d(If) - λ d(1A), Tc = 25°

CIEx, y change as function of Current - White

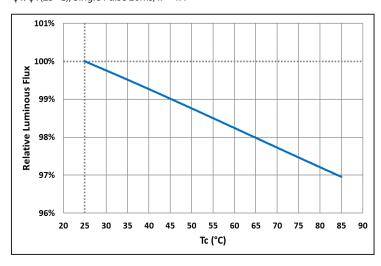
Chromaticity Shift vs. If $\Delta CIEx,y = CIEx,y(If) - CIEx,y$ (1A), Single Pulse 20ms $Tc = 25^{\circ}C$



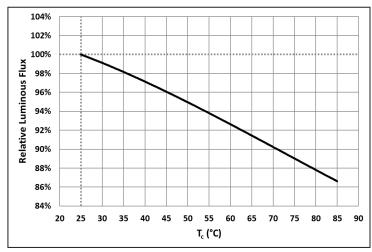
Optical & Electrical Characteristics


Relative Luminous Flux - Red

Relative Luminous Flux vs. Tc $\varphi v/\varphi v(25 \, ^{\circ}C)$, Single Pulse 20ms, If = 1A

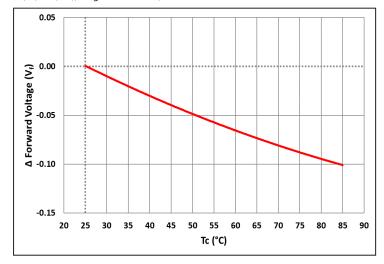

Relative Luminous Flux - Green

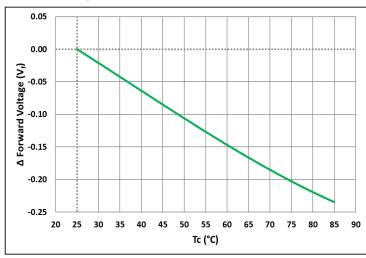
Relative Luminous Flux vs. Tc $\varphi v/\varphi v(25 \, ^{\circ}C)$, Single Pulse 20ms, If = 1A


Relative Luminous Flux - Blue

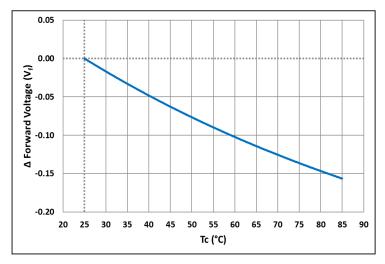
Relative Luminous Flux vs. Tc $\phi v/\phi v(25 \, ^{\circ}C)$, Single Pulse 20ms, If = 1A

Relative Luminous Flux - White

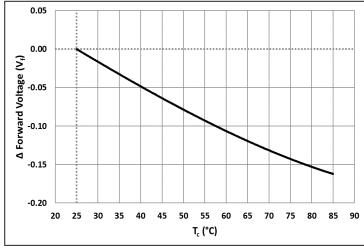

Relative Luminous Flux vs. Tc $\varphi v/\varphi v(25 \text{ °C})$, Single Pulse 20ms, If = 1A


Voltage change as function of Case Temperaure - Red

 Δ Forward Voltage (Vf) vs. Tc Vf(Tc) - Vf(25°), Single Pulse 20ms, If = 1A

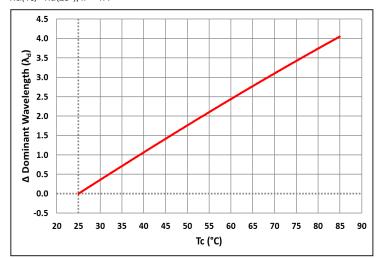

Voltage change as function of Case Temperaure - Green

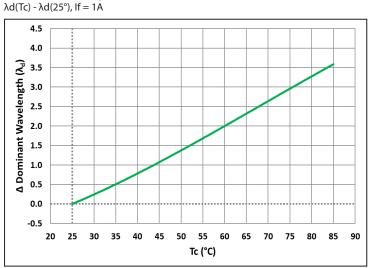
 Δ Forward Voltage (Vf) vs. Tc Vf(Tc) - Vf(25°), Single Pulse 20ms, If = 1A


Voltage change as function of Case Temperaure - Blue

 Δ Forward Voltage (Vf) vs. Tc Vf(Tc) - Vf(25°), Single Pulse 20ms, If = 1A

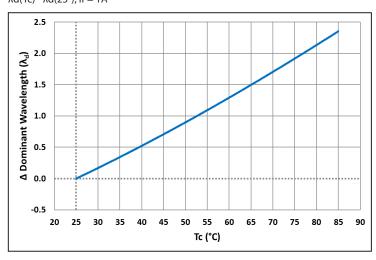
Voltage change as function of Case Temperaure - White


 Δ Forward Voltage (Vf) vs. Tc Vf(Tc) - Vf(25°), Single Pulse 20ms, If = 1A

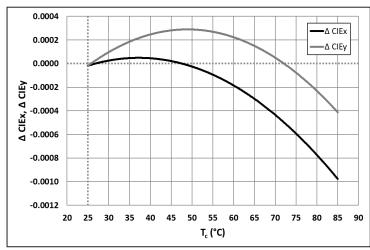


Wavelength change as function of Case Temperature - Red Wavelength change as function of Case Temperature - Green

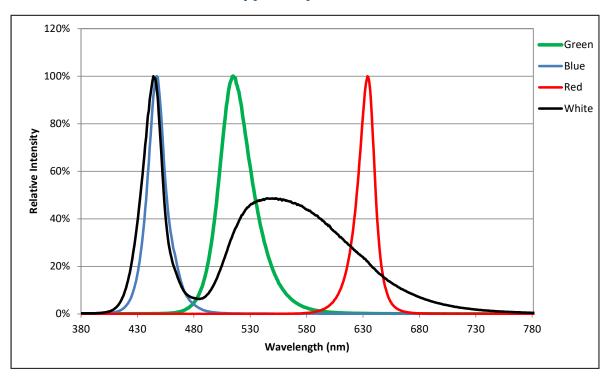
 Δ Dominant Wavelength ($\lambda d)$ vs. Tc $\lambda d(Tc)$ - $\lambda d(25^{\circ}),$ If = 1A



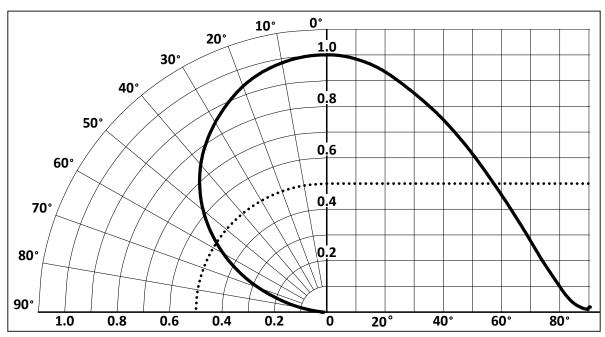
Δ Dominant Wavelength (λd) vs. Tc


Wavelength change as function of Case Temperature - Blue

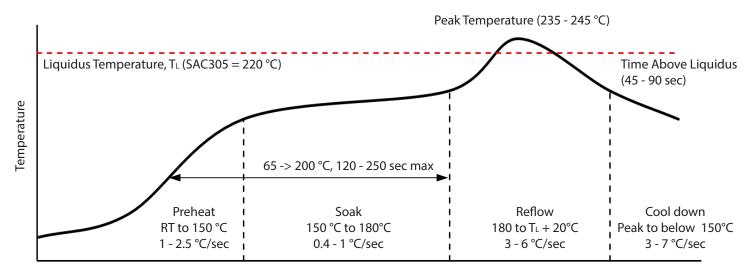
 Δ Dominant Wavelength (λ d) vs. Tc λ d(Tc) - λ d(25°), If = 1A


CIEx, y change as function of Case Temperature - White

 Δ Dominant Wavelength (\lambda d) vs. Tc \lambda d(Tc) - \lambda d(25°), If = 1A

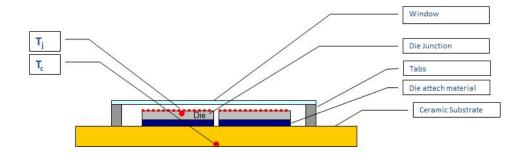


Typical Spectrum


Angular Intensity Distribution (Typical)

Note 8: Typical spectrum from Red, Green, Blue and White LEDs at reference current of 1 A, CW. Please contact Luminus to obtain data in Excel format.

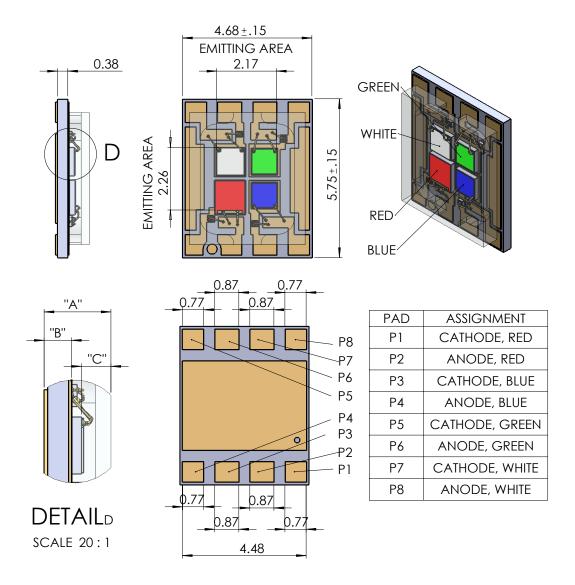
Solder Profile


Time

SMT Rework Guideline Manual Hotplate Reflow Hot Air Gun Reflow		Hot Air Gun Reflow	
Heating Time	< 60 sec		
Hotplate Temperature < 245°C < 150°C		< 150°C	

- Note 1: Product complies to Moisture Sensitivity Level 3 (MSL 3)
- Note 2: The numbers in the table are specific to SAC305. Luminus recommends using an SAC305 solder paste with a no-clean flux for RoHS compliant products.
- Note 3: During the pick and place process, axial forces on the dome (or window) should not exceed 0.5 Newtons (N)
- Note 4: Use of a multi-zone IR reflow oven with a nitrogen blanket is recommended.
- Note 5: Time-temperature profile of the reflow process showing the four functional profile zones are defined in IPC-7801. Temperature is referenced to the center of the PCB.
- Note 6: Luminus recommends to use the solder paste data sheet information as a starting point in time-temperature process development.
- Note 7: These are general guidelines. Consult the solder paste manufacturer's datasheet for guidelines specific to the alloy and flux combination used in your application. For more information, please refer to: https://luminusdevices.zendesk.com/hc/en-us/articles/360060306692-How-do-l-Reflow-Solder-Luminus-SMD-Components-
- Note 8: For any technical questions about soldering process, please contact Luminus at techsupport@luminus.com.

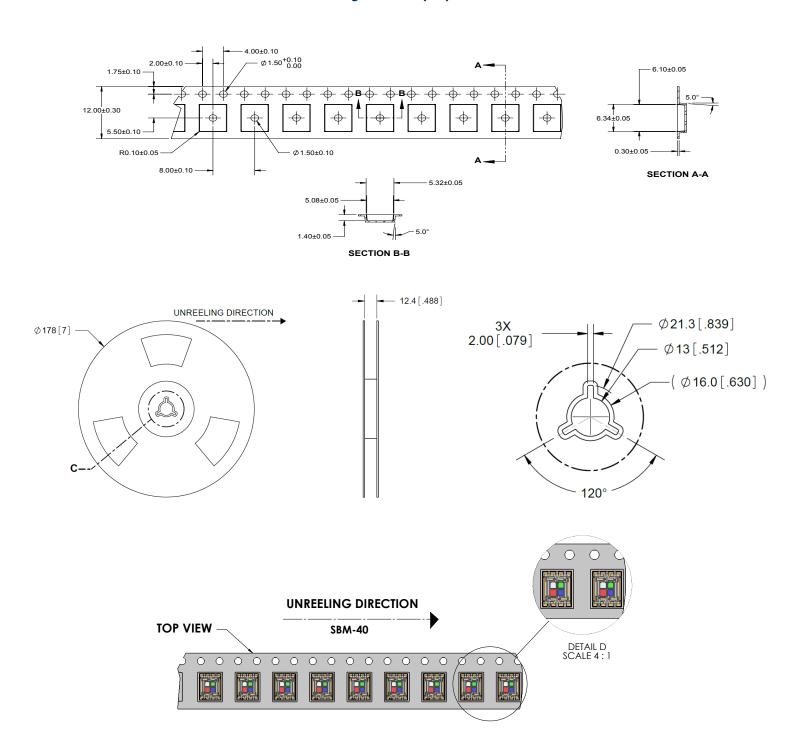
SBM-40-SC Thermal Resistance


Thermal resistance junction to case, R $_{th(j-c)_real} = 1.0$ °C/W (typ.),(All chips operated simultaneously) Thermal resistance junction to case, R $_{th(j-c)_electrical} = 0.8$ °C/W (typ.) (All chips operated simultaneously)

Case Temperature (T_c) = Temperature at bottom of ceramic substrate.

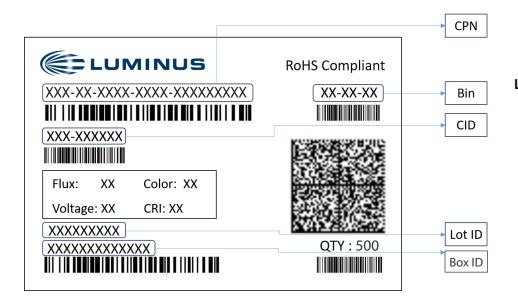
Note: Measurements are in accordance with JEDEC 51-14. For more about thermal resistance calculation, please see $\frac{\text{https://luminusdevices.zendesk.com/}}{\text{hc/en-us/articles/4416807960717-Thermal-Heatsink-Required-Rth-Calculator}}$

Mechanical Dimensions - SBM-40-SC Emitter


DIMENSION NAME	DESCRIPTION	NOMINAL DIMENSION	TOLERANCE
"A"	BOTTOM OF SUBSTRATE TO TOP OF WINDOW	1.21	±.10
"B"	BOTTOM OF SUBSTRATE TO TOP OF COPPER TRACE	0.52	±.05
"C"	TOP OF DIE EMITTING AREA TO TOP OF WINDOW	0.48	±.07

For prototyping purposes, please see Bergquist thermal clad boards, part #803807 (square board) or part #803808 (star board). Available from Digi-Key or Mouser.

Shipping Reel Outline


Packing Unit = 500 pcs per reel

Note: For detailed drawing, please refer to drawing number: TO-1156.

Shipping Label

Label Fields:

- CPN: Luminus ordering part number
- CID: Customer's part number
- QTY: Quantity of devices in pack
- Flux: Bin as defined on page 4
- Voltage: NA
- Color: Bin as defined on page 4
- CRI: NA

Packing Configuration:

- Maximum 500 devices per reel
- Partial reel may be shipped
- · Each pack is enclosed in anti-static bag
- Shipping label is placed on top of each pack

Revision History

Rev	Date	Description of Change
01	05/27/2018	Preliminary Datasheet release
02	08/15/2018	Initial Release with updated white chromaticity bins and editorial changes
03	04/29/2022	Update typical Vf, white bin definition, characteristic graphs and solder profile, add shipping label, and some editorial changes
04	06/09/2022	Update characteristic graphs

The products, their specifications and other information appearing in this document are subject to change by Luminus Devices without notice. Luminus Devices assumes no liability for errors that may appear in this document, and no liability otherwise arising from the application or use of the product or information contained herein. None of the information provided herein should be considered to be a representation of the fitness or suitability of the product for any particular application or as any other form of warranty. Luminus Devices' product warranties are limited to only such warranties as accompany a purchase contract or purchase order for such products. Nothing herein is to be construed as constituting an additional warranty. No information contained in this publication may be considered as a waiver by Luminus Devices of any intellectual property rights that Luminus Devices may have in such information.

This product is protected by U.S. Patents 6,831,302; 7,074,631; 7,083,993; 7,084,434; 7,098,589; 7,105,861; 7,138,666; 7,166,870; 7,166,871; 7,170,100; 7,196,354; 7,211,831; 7,262,550; 7,274,043; 7,301,271; 7,341,880; 7,344,903; 7,345,416; 7,348,603; 7,388,233; 7,391,059 Patents Pending in the U.S. and other countries.